C2C12 myoblast/osteoblast transdifferentiation steps enhanced by epigenetic inhibition of BMP2 endocytosis.

نویسندگان

  • Cyril Rauch
  • Anne-Christine Brunet
  • Julie Deleule
  • Emmanuel Farge
چکیده

We investigated the modulation of critical transcriptional steps of C2C12 myoblast/osteoblast transdifferentiation triggered by the bone morphogenetic protein 2 (BMP2) signaling protein, in response to epigenetic inhibition of the endocytotic internalization of exogenous BMP2. BMP2 endocytosis was inhibited chemically with polyethylene glycol-50 (PEG-Chol) and cyclodextrin and mechanically by mild hyposmotic treatment. BMP2-dependent nuclear translocation of the mother against Dpp (Smad1) transcription factor was ten times faster if BMP2 endocytosis was inhibited. Smad1-dependent expression of the JunB gene, the first transcriptional step in myoblast dedifferentiation, was increased by a factor of three to four. JunB-dependent levels of myogenin repression, one of the critical markers of terminal myoblastic differentiation, was amplified by a factor of three. Smad1-dependent levels of alkaline phosphatase expression, one of the C2C12 osteoblast differentiation markers, were 3.5 to 5 times higher. The same behavior was observed for osteopontin, the other C2C12 osteoblast differentiation marker. These results suggest that the cell genome could "sense" tissue mechanical deformations by mechanical inhibition of signaling protein endocytosis, thereby translating mechanical strains into transcription events involved in cell differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells.

Cell surface heparan sulfate proteoglycans (HSPGs) have been implicated in bone morphogenetic protein (BMP)-mediated morphogenesis by regulating BMP activity and gradient formation. However, the direct role of HSPGs in BMP signaling is poorly understood. Here we show that HSPGs directly regulate BMP2-mediated transdifferentiation of C2C12 myoblasts into osteoblasts. HSPGs sequester BMP2 at the ...

متن کامل

Spatial Segregation of BMP/Smad Signaling Affects Osteoblast Differentiation in C2C12 Cells

BACKGROUND Bone morphogenetic proteins (BMPs) are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulat...

متن کامل

Epigenetic regulation enables trans-differentiation Epigenetic modifications and canonical WNT signaling enable trans-differentiation of non-osteogenic cells into osteoblasts

Mesenchymal cells alter and retain their phenotype during skeletal development through activation or suppression of signaling pathways. For example, we have shown that Wnt3a only stimulates osteoblast differentiation in cells with intrinsic osteogenic potential (e.g., MC3T3-E1 preosteoblasts) and not in fat cell precursors or fibroblasts (respectively, 3T3-L1 preadipocytes or NIH3T3 fibroblasts...

متن کامل

Pitx2 prevents osteoblastic transdifferentiation of myoblasts by bone morphogenetic proteins.

Muscle cells are often exposed to bone morphogenetic proteins (BMPs) in pathological muscle and/or bone conditions. Because BMPs function as strong bone inducers as well as myogenesis inhibitors, certain molecules likely prevent muscle cells from converting into pathologic bone; without these molecules, de novo bone would form as observed in myositis ossificans traumatica. When C2C12 myoblasts ...

متن کامل

Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation

We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteobla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 283 1  شماره 

صفحات  -

تاریخ انتشار 2002